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Abstract. Normalized Cuts has successfully been applied to a wideerarfig
tasks in computer vision, it is indisputably one of the magtydar segmentation
algorithms in use today. A number of extensions to this aggitdave also been
proposed, ones that can deal with multiple classes or tindhcarporate a priori
information in the form of grouping constraints. It was nettg shown how a gen-
eral linearly constrained Normalized Cut problem can bgesbl This was done
by proving that strong duality holds for the Lagrangian xatéon of such prob-
lems. This provides a principled way to perform multi-clgsstitioning while
enforcing any linear constraints exactly.

The Lagrangian relaxation requires the maximization ofagebraically small-
est eigenvalue over a one-dimensional matrix sub-spaégisién unconstrained,
piece-wise differentiable and concave problem. In thisepape show how to
solve this optimization efficiently even for very large-&cproblems. The method
has been tested on real data with convincing restlts.

1 Introduction

Image segmentation can be defined as the task of partiti@irighage into disjoint
sets. This visual grouping process is typically based onlémg| cues such as intensity,
homogeneity or image contours. Existing approaches irdhbcesholding techniques,
edge based methods and region-based methods. Extenstaisspgoocess includes the
incorporation of grouping constraints into the segmeatafirocess. For instance the
class labels for certain pixels might be supplied befordhtirough user interaction or
some completely automated process, [1, 2].

Perhaps the most successful and popular approaches foesgggimages are
based on graph cuts. Here the images are converted intoeatetirgraphs with edge
weights between the pixels corresponding to some meassimiérity. The ambition
is that partitioning such a graph will preserve some of treiapstructure of the image
itself. These graph based methods were made popular fiosstghtthe Normalized Cut
formulation of [3] and more recently by the energy minimiaatmethod of [4]. This
algorithm for optimizing objective functions that are sutmnlar has the property of
solving many discrete problems exactly. However, not ajhsentation problems can
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be formulated with submodular objective functions, not j{zassible to incorporate all
types of linear constraints.

In [5] it was shown how linear grouping constraints can bduded in the former
approach, Normalized Cuts. It was demonstrated how Lagranglaxation can in a
unified can handle such linear constrains and also in whatthey influence the re-
sulting segmentation. It did not however address the macissues of finding such
solutions. In this paper we develop efficient algorithmsdolving the Lagrangian re-
laxation.

2 Background.

2.1 Normalized Cuts.

Consider an undirected gragh with nodesv and edge& and where the non-negative
weights of each such edge is represented by an affinity métrjxwith only non-
negative entries and of full rank. A min-cut is the non-iviubset A of V such that
the sum of edges between nodes in A and V is minimized, thheistinimizer of

cut(A, V) = Z Wij 1)

€A, JEV\A

This is perhaps the most commonly used method for splittiraplys and is a well
known problem for which very efficient solvers exist. It hasaever been observed
that this criterion has a tendency to produced unbalances] smaller partitions are
preferred to larger ones.
In an attempt to remedy this shortcoming, Normalized Cuts waoduced by [3].

It is basically an altered criterion for partitioning graplapplied to the problem of
perceptual grouping in computer vision. By introducing amalizing term into the cut
metric the bias towards undersized cuts is avoided. The Bliiwed Cut of a graph is
defined as:

cut(A,V) cut(B,V)
assoc(A, V) = assoc(B,V)
whereAU B =V, AN B = () and the normalizing term defined assoc(A,V) =
ZieAjeV wy; Itis then shown in [3] that by relaxing (2) a continuous uredgimator
of the Normalized Cut can be efficiently computed.

To be able to include general linear constraints we refoatedl the problem in the
following way, (see [5] for details). Witk = W1 and D = diag(d) Normalized Cut
cost can be written as

. zT(D - W)z
inf ,
2 —2TddTz + (17d)?
The above problemis a non-convex, NP-hard optimizatioblera. In[5]z € {—1,1}"

constraint was replaced with the norm constraiht = n. This gives us the relaxed
problem

Newt = (2)

stze{-1,1}", Cz=b. (3)
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Even though this is a non-convex problem it was shown in [&] s possible to solve
this problem exactly.

2.2 The Fractional Trust Region Subproblem

Next we briefly review the theory for solving (4). If we létbe the extended vector
Ed an]T. Throughout the paper we will writé when we consider the extended

variables and just when we consider the original ones. With= [C' — 0] the linear
constraints becomé&sz = b, and now form a linear subspace and can be eliminated in
the following way. LetV, be a matrix where its columns form a base of the nullspace
of C. Any 2 fulfilling C'2 = 0 can be writterg = Neg, whereg € R**1. Assuming
that the linear constraints are feasible we may always @hthag basis so thgt.; =

~ o T D—-W o T T _ T
ni1. LetLe = N7 [P 0] NG, and Mg, = Ng [<<1 9 D—dd >g}Né, both

positive semidefinite, (see [5]). In the new space we getdhewing formulation
QT
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Where||gj||§vé = ;QTNCTNO?;. We call this problem the fractional trust region sub-
problem since if the denominator is removed it is similartie standard trust region
problem [6]. A common approach to solving problems of thigetys to simply drop
one of the two constraints. This may however result in vemgrsolutions. For exam-
ple, in [7] segmentation with prior data was studied. Theotdye function considered
there contained a linear part (the data part) and a quadratothing term. It was ob-
served that whemy,,1 # +1 the balance between that smoothing term and the data
term was disrupted, resulting in very poor segmentations.

In [5] it was show that in fact this problem can be solved elyaatithout excluding
any constraints, by considering the dual problem.

Theorem 1. If a minima of (5) exists its dual problem

~T N
. 9" (La+tEs)G
supy inf g3 —ni1 T—Fag (6)
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has no duality gap.

Since we assume that the problem is feasible and as the iwbjaatction of the pri-
mal problem is the quotient of two positive semidefinite qadid forms a minima
obviously exists. Thus we can apply this theorem directlgt aalve (5) through its
dual formulation. We will usef'(¢, §) to denote the objective function of (6), the La-
grangian of problem (5). By the dual functiéiit) we mean the solution df(t) =
inf)jg13, =nt1 F(E:9)

The inner minimization of (6) is the well known generalizeayiRigh quotient, for
which the minima is given by the algebraically smallest galiged eigenvalué of

2 By generalized eigenvalue of two matricésand B we mean finding & = A€ (A, B) andv,
[|[v]| = 1 such thatdv = ABwv has a solution.



(Ly +tEgs) and M. Letting Amin (2)(-, -) denote the smallest generalized eigenvalue
of two entering matrices, we can also write problem (6) as

sup )\min(Lé +tEé,Mé). (7)
t

These two dual formulations will from here on be used intangeably, it should be
clear from the context which one is being referred to. In fhaper we will develop
methods for solving the outer maximization efficiently.

3 Efficient Optimization

3.1 Subgradient Optimization

First we present a method, similar to that used in [8] for mizing binary problems
with quadratic objective functions, based on subgradifemtsolving the dual formula-
tion of our relaxed problem. We start off by noting thabgs is a pointwise infimum of
functions linear irt it is easy to see that this is a concave function. Hence thex opti-
mization of (6) is a concave maximization problem, as is egxbfrom dual problems.
Thus a solution to the dual problem can be found by maximiaingncave function in
one variable. Note that the choice of norm does not affect the valugibbnly affects
the minimizerg*.

It is widely known that the eigenvalues are analytic (andehg differentiable)
functions as long as they are distinct. Thus, to be able tasteepest ascent method
we need to consider subgradients. Recall the definition abgradient [9, 8].

Definition 1 If a functiong : R¥*! — R is concave, them € R**! is a subgradient
tog atoy if

g(o) < gloo) +v7 (0 — 0g), Vo e RFFL (8)
One can show that if a function is differentiable then thewdgive is the only vector
satisfying (8). We will denote the set of all subgradientg @t a pointty by dg(to).

It is easy to see that this set is convex and & Jg(to) thent, is a global maximum.
Next we show how to calculate the subgradients of our problem

Lemma 1. If go fulfills F(go, to) = 6(to) and|[jo[|%,, = n + 1. Then
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is a subgradient of atty. If 6 is differentiable at,, thenv is the derivative ob at ¢y.
Proof.

AT . . ~ AT . . A~

f(t) = min §" (Le +tER)Y <% (Lo +tE&)Go

a3, =1 9"Meg T 95 Medo

90 (Le+toEz)jo | 95 Eado (

= < _ 7 = (t—to) = 0(ty) + v (t —t 10
T T Moo 0) = 0(to) (t —to) (10)




A Subgradient Algorithm Next we present an algorithm based on the theory of sub-
gradients. The idea is to find a simple approximation of thjeailve function. Since the
functiond is concave, the first order Taylor expansi(t), around a point;, always
fuffills f;(t) < f(t). If §; solvesinf) 52—, 11 F'(9,t;) and this solution is unique then
the Taylor expansion df att; is ¢

0;(t) = F(9i,t;) + 07 (t — ;). (11)

Note that ifg; is not uniquef; is still an overestimating function sinegs a subgradient.
One can assume that the functrapproximate$ well in a neighborhood around

t = t; if the smallest eigenvalue is distinct. If it is not we can esfthat there is sorng

such thatmin(¢;(t), 6;(t)) is a good approximation. Thus we will construct a function

6 of the type

o(t) = inf F(gi, t:) + () (12)

that approximate8 well. That is, we approximaté with the point-wise infimum of
several first-order Taylor expansions, computed at a nuwoftifferent values of, an

illustration can be seen in fig. 1. We then take the solutiothé&problemsup, 6(¢),
given by

Supt,a « . ) (13)
a < F(gi,ti) + o (t = t;), Vi € I, tiin <t < tmas.

as an approximate solution to the original dual problem.etHére fixed parameters
tmin, tmae @re used to express the interval for which the approximatapelieved
to be valid. Lett;; denote the optimizer of (13). It is reasonable to assumeéhat
approximate® better the more Taylor approximations we use in the lineaggm.
Thus, we can imprové by computing the first-order Taylor expansion aroung,
add it to (13) and solve the linear program again. This isagreuntil|t 1 —tn| < €

for some predefined > 0, andt 1 will be a solution tasup, 6(¢).

3.2 A Second Order Method

The algorithm presented in the previous section uses fidgraterivatives only. We
would however like to employ higher order methods to inceestBiciency. This requires
calculating second order derivatives of (6). Most formdtascalculating the second
derivatives of eigenvalues involves all of the eigenvextnd eigenvalues. However,
determining the entire eigensystem is not feasible fodagale systems. We will show
that itis possible to determine the second derivative ofgerealue function by solving
a certain linear system only involving the correspondimggevalue and eigenvector.
The generalized eigenvalues and eigenvectors fulfillsahevfing equations

(Lg +tEgs) — AMt)Ma)g(t) =0 (14)
19(8)Iy, = n+1. (15)
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Fig. 1. Approximations of two randomly generated objective fuoies. Top: Approximation after
1 step of the algorithm. Bottom: Approximation after 2 stepthe algorithm.

To emphasize the dependencetave write \(¢) for the eigenvalue angi(¢) for the
eigenvector. By differentiating (14) we obtain

(Ep — N(OMp)i(t) + (Le + tEg) — ME)M)g' (t) = 0. (16)

This(k + 1) x (k + 1) linear system irj’ () will have a rank oft, assuming\(k) is a
distinct eigenvalue. To determigé(t) uniquely we differentiate (15), obtaining

9T ()N Ny () = 0. (17)

Thus, the derivative of the eigenvecti(t) is determined by the solution to the linear
system

(La+tEA)—AE)Ma ] . Bt N (O MA)G
Ao =[]

If we assume differentiability at, the second derivative @ft) can now be found by
computing%@’(t), wheref’(t) is equal to the subgradientgiven by (9).

g() T Eay(t . N
0"(t) = %9’(15) %g((t))TMZZ((t)) - @(t)T]@éﬂ(t)yT(t) (Eé - 9/(t)Mé) 7 (t)(19)

A Modified Newton Algorithm Next we modify the algorithm presented in the pre-
vious section to incorporate the second derivatives. Nwéethe second order Taylor
expansion is not necessarily an over-estimatat.afherefore we can not use the the
second derivatives as we did in the previous section.

Instead, as we know to be infinitely differentiable when the smallest eigenealu
A(t) is distinct, strictly convex around its optinig, Newton’s method for unconstrained
optimization can be applied. It follows from these propstofd(t) that Newton’s



method [9] should be well behaved on this function and thatewdd expect quadratic
convergence in a neighborhoodiéf All of this, under the assumption théis differ-
entiable in this neighborhood. Since Newton’s method da¢gnarantee convergence
we have modified the method slightly, adding some safegngmieasures.

At a given iteration of the Newton method we have evalu#tgg at a number of
pointst;. As @ is concave we can easily find upper and lower bounds @ty,;,,, tmax)
by looking at the derivative of the objective function foetie values of = ¢,.

tmax = min t;, andty,;, = max t; (20)
13607 (ti) <0 ;67 (t:)>0
At each step in the Newton method a new iterate is found bycgpiating the objective
function is by its second-order Taylor approximation

0(t) ~ 0(t;) + 0'(t:)(t — t;) + 9//;“) (t — ;)2 (21)

and finding its maxima. By differentiating (21) it is easilyosvn that its optima, as well
as the next point in the Newton sequence, is given by
/
liy1 = —% + (22)

If ¢;+1 is notin the intervalt,,in, tmax) then the second order expansion can not be
a good approximation df, here the safeguarding comes in. In these cases we simply
fall back to the first-order method of the previous sectiémve successively store the
values ofd(¢;), as well as the computed subgradients at these points athiseccarried
out with little extra computational effort. Then, the upperd lower bounds,,;,, and
tmax are updated; is incremented byl and the whole procedure is repeated, until
convergence.

If the smallest eigenvaluk(¢;) at an iteration is not distinct, thett (¢) is not de-
fined and a new Newton step can not be computed. In these casessavuse the
subgradient gradient method to determine the subseqeeatat However, empirical
studies indicate that non-distinct smallest eigenvaloegztremely unlikely to occur.

4 Experiments

A number of experiments were conducted in an attempt to atalthe suggested ap-
proaches. As we are mainly interested in maximizing a comcpiece-wise differen-
tiable function, the underlying problem is actually sometvhirelevant. However, in
order to emphasize the intended practical application®ptioposed methods, we ran
the subgradient- and modified Newton algorithms on both lemalynthetic problems
as well as on larger, real-world data. For comparison papesg also include the re-
sults of a golden section method [9], used in [5], as a basaligorithm.

First, we evaluated the performance of the proposed metbodslarge number
of synthetic problems. These were created by randomly ¢hgeymmetric, positive
definite,100 x 100 matrices. As the computational burden lies in determinireggen-
eralized eigenvalue of the matriceg, +tE and M we wish to reduce the number of



such calculations. Figure 2 shows a histogram of the numibeigenvalue evaluations
for the subgradient-, modified Newton method as well as ttselbse golden section
search.
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Fig. 2. Histogram of the number of function evaluations required.féD0-synthetically generated
experiments using a golden section method (blue) and trgradient algorithm (red).

The two gradient methods clearly outperforms the goldeti@esearch. The dif-
ference between the subgradient- and modified Newton issdisaernible. The some-
what surprisingly good performance of the subgradient nettfan be explained by the
fact that far away from* the functiond(t) is practically linear and an optimization
method using second derivatives would not have much adgardeer one that uses
only first order information.

Finally, we applied our methods to two real world exampldse Tinderlying mo-
tivation for investigating an optimization problem of th@m was to segment images
with linear constraints using Normalized Cuts. The firstgmaan be seenin fig. 3, the
linear constraints included were hard constraints, thtdsrequirement that that cer-
tain pixels should belong to the foreground or backgrounte €an imagine that such
constraints are supplied either by user interaction in ai-seqervised fashion or by
some automatic preprocessing of the image. The image wgssgede, approximately
100 x 100 pixels in size, the associated graph was constructed basedge informa-
tion as described in [10]. The second image was of trafficsetetion where one wishes
to segment out the small car in the top corner. We have a pildpabap of the image,
giving the likelihood of a certain pixel belonging to the éground. Here the graph
representation is based on this map instead of the graysaites in the image. The
approximate size and location of the vehicle is know andiidet! as linear constraint
into the segmentation process. The resulting partitiorbeaseen in fig. 4.

In both these real world cases, the resulting segmentatibalways be the same,
regardless of approach. What is different is the computatioomplexity of the dif-
ferent methods. Once again, the two gradient based apmeack much more effi-
cient than a golden section search, and their respectiferpeance comparable. As
the methods differ in what is required to compute, a direchjgarison of them is not
a straight forward procedure. Comparing the run time wowdbintless as the de-
gree to which the implementations of the individual methbdge been optimized for



Fig. 3. Top: Resulting segmentation (left) and constraints agplight). Here an X means that
this pixel belongs to the foreground and an O to the backgtoBttom: Convergence of the
modified Newton (solid), subgradient (dashed) and the gosaetion (dash-dotted) algorithms.
The algorithms converged after 9, 14 and 23 iteration reimbye

speed differ greatly. However, as it is the eigenvalue caatmns that are the most
demanding we believe that comparing the number of such edd@m calculations will
be a good indicator of the computational requirements ferdifferent approaches. It
can be seenin fig. 3 and 4 how the subgradient methods cosvgugekly in the ini-
tial iterations only to slow down as it approaches the optifias is in support of the
above discussion regarding the linear appearance of tlogidad (¢) far away from the
optima. We therfore expect the modified Newton method to Ipesor when higher
accuracy is required.

In conclusion we have proposed two methods for efficientlynoiging a piece-wise
differentiable function using both first- and second ordésimation applied to the task
of partitioning images. Even though it is difficult to proeid completely accurate com-
parison between the suggested approaches it is obviouththiliewton based method
is superior.

References

1. Rother, C., Kolmogorov, V., Blake, A.: "GrabCut”": intetave foreground extraction using
iterated graph cuts. In: ACM Transactions on Graphics. 42009-314

2. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optiboundary and region segmentation
of objects in n-d images. In: International Conference om@ater Vision, Vancouver,
Canada (2001) 05-112



Fig. 4. Top: Resulting segmentation (left) and constraints applieaddition to the area require-
ment used (area = 50 pixels) (right). Here the X in the toptrmtrt of the corner means that this
pixel belongs to the foreground. Bottom: Convergence oftbelified Newton (solid), subgradi-

en
15

10.

t (dashed) and the golden section (dash-dotted) algwitfihe algorithms converged after 9,
and 23 iteration respectively.

. Shi, J., Malik, J.: Normalized cuts and image segmentatl&EE Trans. Pattern Analysis
and Machine Intelligenc22(8) (2000) 888-905

. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate ggeninimization via graph cuts.
IEEE Trans. Pattern Analysis and Machine IntelligeB8€l1) (2001) 1222-1239

. Eriksson, A., Olsson, C., Kahl, F.: Normalized cuts rigets A reformulation for segmenta-
tion with linear grouping constraints. In: Internationar@erence on Computer Vision, Rio
de Janeiro, Brazil (2007)

. Sorensen, D.: Newton’s method with a model trust regionifitation. SIAM Journal on
Nummerical Analysid 9(2) (1982) 409-426

. Eriksson, A., Olsson, C., Kahl, F.: Image segmentatidh wontext. In: Proc. Conf. Scan-
dinavian Conference on Image Analysis, Ahlborg, Denma@o{2

. Olsson, C., Eriksson, A., Kahl, F.: Solving large scaleaby quadratic problems: Spec-
tral methods vs. semidefinite programming. In: Proc. Comim@uter Vision and Pattern
Recognition, Mineapolis, USA (2007)

. Bazaraa, Sherali, Shetty.: Nonlinear Programming, ihaond Algorithms. Wiley (2006)

Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contoud éexture analysis for image segmen-

tation. International Journal of Computer Visid&(1) (2001) 7-27



