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Abstract. Normalized Cuts has successfully been applied to a wide range of
tasks in computer vision, it is indisputably one of the most popular segmentation
algorithms in use today. A number of extensions to this approach have also been
proposed, ones that can deal with multiple classes or that can incorporate a priori
information in the form of grouping constraints. It was recently shown how a gen-
eral linearly constrained Normalized Cut problem can be solved. This was done
by proving that strong duality holds for the Lagrangian relaxation of such prob-
lems. This provides a principled way to perform multi-classpartitioning while
enforcing any linear constraints exactly.
The Lagrangian relaxation requires the maximization of thealgebraically small-
est eigenvalue over a one-dimensional matrix sub-space. This is an unconstrained,
piece-wise differentiable and concave problem. In this paper we show how to
solve this optimization efficiently even for very large-scale problems. The method
has been tested on real data with convincing results.1

1 Introduction

Image segmentation can be defined as the task of partitioningan image into disjoint
sets. This visual grouping process is typically based on low-level cues such as intensity,
homogeneity or image contours. Existing approaches include thresholding techniques,
edge based methods and region-based methods. Extensions tothis process includes the
incorporation of grouping constraints into the segmentation process. For instance the
class labels for certain pixels might be supplied beforehand, through user interaction or
some completely automated process, [1, 2].

Perhaps the most successful and popular approaches for segmenting images are
based on graph cuts. Here the images are converted into undirected graphs with edge
weights between the pixels corresponding to some measure ofsimilarity. The ambition
is that partitioning such a graph will preserve some of the spatial structure of the image
itself. These graph based methods were made popular first through the Normalized Cut
formulation of [3] and more recently by the energy minimization method of [4]. This
algorithm for optimizing objective functions that are submodular has the property of
solving many discrete problems exactly. However, not all segmentation problems can
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be formulated with submodular objective functions, nor is it possible to incorporate all
types of linear constraints.

In [5] it was shown how linear grouping constraints can be included in the former
approach, Normalized Cuts. It was demonstrated how Lagrangian relaxation can in a
unified can handle such linear constrains and also in what waythey influence the re-
sulting segmentation. It did not however address the practical issues of finding such
solutions. In this paper we develop efficient algorithms forsolving the Lagrangian re-
laxation.

2 Background.

2.1 Normalized Cuts.

Consider an undirected graphG, with nodesV and edgesE and where the non-negative
weights of each such edge is represented by an affinity matrixW , with only non-
negative entries and of full rank. A min-cut is the non-trivial subset A of V such that
the sum of edges between nodes in A and V is minimized, that is the minimizer of

cut(A, V ) =
∑

i∈A, j∈V \A

wij (1)

This is perhaps the most commonly used method for splitting graphs and is a well
known problem for which very efficient solvers exist. It has however been observed
that this criterion has a tendency to produced unbalanced cuts, smaller partitions are
preferred to larger ones.

In an attempt to remedy this shortcoming, Normalized Cuts was introduced by [3].
It is basically an altered criterion for partitioning graphs, applied to the problem of
perceptual grouping in computer vision. By introducing a normalizing term into the cut
metric the bias towards undersized cuts is avoided. The Normalized Cut of a graph is
defined as:

Ncut =
cut(A, V )

assoc(A, V )
+

cut(B, V )

assoc(B, V )
(2)

whereA ∪ B = V , A ∩ B = ∅ and the normalizing term defined asassoc(A, V ) =
∑

i∈Aj∈V wij It is then shown in [3] that by relaxing (2) a continuous underestimator
of the Normalized Cut can be efficiently computed.

To be able to include general linear constraints we reformulated the problem in the
following way, (see [5] for details). Withd = W1 andD = diag(d) Normalized Cut
cost can be written as

inf
z

zT (D − W )z

−zT ddT z + (1T d)2
, s.t.z ∈ {−1, 1}n, Cz = b. (3)

The above problem is a non-convex,NP-hard optimization problem. In [5]z ∈ {−1, 1}n

constraint was replaced with the norm constraintzT z = n. This gives us the relaxed
problem

inf
z

zT (D − W )z

−zT ddT z + (1T d)2
, s.t.zT z = n, Cz = b. (4)



Even though this is a non-convex problem it was shown in [5] that it is possible to solve
this problem exactly.

2.2 The Fractional Trust Region Subproblem

Next we briefly review the theory for solving (4). If we letẑ be the extended vector
[

zT zn+1

]T
. Throughout the paper we will writêz when we consider the extended

variables and justz when we consider the original ones. WitĥC = [C − b] the linear
constraints becomesCz = b, and now form a linear subspace and can be eliminated in
the following way. LetN

Ĉ
be a matrix where its columns form a base of the nullspace

of Ĉ. Any ẑ fulfilling Ĉẑ = 0 can be written̂z = N
Ĉ
ŷ, whereŷ ∈ R

k+1. Assuming
that the linear constraints are feasible we may always choose that basis so that̂yk+1 =

ẑn+1. Let L
Ĉ

= N
Ĉ

T
[

(D−W ) 0
0 0

]

N
Ĉ

and M
Ĉ

= N
Ĉ

T
[

((1T d)D−ddT ) 0
0 0

]

N
Ĉ

, both

positive semidefinite, (see [5]). In the new space we get the following formulation

inf
ŷ

ŷT L
Ĉ

ŷ

ŷT M
Ĉ

ŷ
, s.t. ŷk+1 = 1, ||ŷ||2N

Ĉ

= n + 1, (5)

where||ŷ||2N
Ĉ

= ŷT N
Ĉ

T N
Ĉ
ŷ. We call this problem the fractional trust region sub-

problem since if the denominator is removed it is similar to the standard trust region
problem [6]. A common approach to solving problems of this type is to simply drop
one of the two constraints. This may however result in very poor solutions. For exam-
ple, in [7] segmentation with prior data was studied. The objective function considered
there contained a linear part (the data part) and a quadraticsmoothing term. It was ob-
served that whenyk+1 6= ±1 the balance between that smoothing term and the data
term was disrupted, resulting in very poor segmentations.

In [5] it was show that in fact this problem can be solved exactly, without excluding
any constraints, by considering the dual problem.

Theorem 1. If a minima of (5) exists its dual problem

supt inf ||ŷ||2
N

Ĉ

=n+1
ŷT (L

Ĉ
+tE

Ĉ
)ŷ

ŷT M
Ĉ

ŷ
(6)

whereE
Ĉ

= [ 0 0
0 1 ] −

NT

Ĉ
N

Ĉ

n+1 = NT

Ĉ

[

− 1
n+1

I 0

0 1

]

N
Ĉ

,

has no duality gap.

Since we assume that the problem is feasible and as the objective function of the pri-
mal problem is the quotient of two positive semidefinite quadratic forms a minima
obviously exists. Thus we can apply this theorem directly and solve (5) through its
dual formulation. We will useF (t, ŷ) to denote the objective function of (6), the La-
grangian of problem (5). By the dual functionθ(t) we mean the solution ofθ(t) =
inf ||ŷ||2

N
Ĉ

=n+1 F (t, ŷ)

The inner minimization of (6) is the well known generalized Rayleigh quotient, for
which the minima is given by the algebraically smallest generalized eigenvalue2 of

2 By generalized eigenvalue of two matricesA andB we mean finding aλ = λG(A, B) andv,
||v|| = 1 such thatAv = λBv has a solution.



(L
Ĉ

+ tE
Ĉ

) andM
Ĉ

. Lettingλmin(t)(·, ·) denote the smallest generalized eigenvalue
of two entering matrices, we can also write problem (6) as

sup
t

λmin(L
Ĉ

+ tE
Ĉ

, M
Ĉ
). (7)

These two dual formulations will from here on be used interchangeably, it should be
clear from the context which one is being referred to. In thispaper we will develop
methods for solving the outer maximization efficiently.

3 Efficient Optimization

3.1 Subgradient Optimization

First we present a method, similar to that used in [8] for minimizing binary problems
with quadratic objective functions, based on subgradientsfor solving the dual formula-
tion of our relaxed problem. We start off by noting that asθ(t) is a pointwise infimum of
functions linear int it is easy to see that this is a concave function. Hence the outer opti-
mization of (6) is a concave maximization problem, as is expected from dual problems.
Thus a solution to the dual problem can be found by maximizinga concave function in
one variablet. Note that the choice of norm does not affect the value ofθ it only affects
the minimizerŷ∗.

It is widely known that the eigenvalues are analytic (and thereby differentiable)
functions as long as they are distinct. Thus, to be able to usea steepest ascent method
we need to consider subgradients. Recall the definition of a subgradient [9, 8].

Definition 1 If a functiong : R
k+1 7→ R is concave, thenv ∈ R

k+1 is a subgradient
to g at σ0 if

g(σ) ≤ g(σ0) + vT (σ − σ0), ∀σ ∈ R
k+1. (8)

One can show that if a function is differentiable then the derivative is the only vector
satisfying (8). We will denote the set of all subgradients ofg at a pointt0 by ∂g(t0).
It is easy to see that this set is convex and if0 ∈ ∂g(t0) thent0 is a global maximum.
Next we show how to calculate the subgradients of our problem.

Lemma 1. If ŷ0 fulfills F (ŷ0, t0) = θ(t0) and||ŷ0||
2
N

Ĉ

= n + 1. Then

v =
ŷT
0 E

Ĉ
ŷ0

ŷT
0 M

Ĉ
ŷ0

(9)

is a subgradient ofθ at t0. If θ is differentiable att0, thenv is the derivative ofθ at t0.

Proof.

θ(t) = min
||ŷ||2

N
Ĉ

=1

ŷT (L
Ĉ

+ tE
Ĉ

)ŷ

ŷT M
Ĉ
ŷ

≤
ŷT
0 (L

Ĉ
+ tE

Ĉ
)ŷ0

ŷT
0 M

Ĉ
ŷ0

=

=
ŷT
0 (L

Ĉ
+ t0EĈ

)ŷ0

ŷT
0 M

Ĉ
ŷ0

+
ŷT
0 E

Ĉ
ŷ0

ŷT
0 M

Ĉ
ŷ0

(t − t0) = θ(t0) + vT (t − t0) (10)



A Subgradient Algorithm Next we present an algorithm based on the theory of sub-
gradients. The idea is to find a simple approximation of the objective function. Since the
functionθ is concave, the first order Taylor expansionθi(t), around a pointti, always
fulfills fi(t) ≤ f(t). If ŷi solvesinf ||ŷ||2

N
Ĉ

=n+1 F (ŷ, ti) and this solution is unique then

the Taylor expansion ofθ at ti is

θi(t) = F (ŷi, ti) + vT (t − ti). (11)

Note that ifŷi is not uniquefi is still an overestimating function sincev is a subgradient.
One can assume that the functionθi approximatesθ well in a neighborhood around

t = ti if the smallest eigenvalue is distinct. If it is not we can expect that there is sometj
such thatmin(θi(t), θj(t)) is a good approximation. Thus we will construct a function
θ̄ of the type

θ̄(t) = inf
i∈I

F (ŷi, ti) + vT (t − ti) (12)

that approximatesθ well. That is, we approximateθ with the point-wise infimum of
several first-order Taylor expansions, computed at a numberof different values oft, an
illustration can be seen in fig. 1. We then take the solution tothe problemsupt θ̄(t),
given by

supt,α α

α ≤ F (ŷi, ti) + vT (t − ti), ∀i ∈ I, tmin ≤ t ≤ tmax.
(13)

as an approximate solution to the original dual problem. Here, the fixed parameters
tmin, tmax are used to express the interval for which the approximationis believed
to be valid. Letti+1 denote the optimizer of (13). It is reasonable to assume thatθ̄

approximatesθ better the more Taylor approximations we use in the linear program.
Thus, we can improvēθ by computing the first-order Taylor expansion aroundti+1,
add it to (13) and solve the linear program again. This is repeated until|tN+1− tN | < ǫ

for some predefinedǫ > 0, andtN+1 will be a solution tosupt θ(t).

3.2 A Second Order Method

The algorithm presented in the previous section uses first order derivatives only. We
would however like to employ higher order methods to increase efficiency. This requires
calculating second order derivatives of (6). Most formulasfor calculating the second
derivatives of eigenvalues involves all of the eigenvectors and eigenvalues. However,
determining the entire eigensystem is not feasible for large scale systems. We will show
that it is possible to determine the second derivative of an eigenvalue function by solving
a certain linear system only involving the corresponding eigenvalue and eigenvector.

The generalized eigenvalues and eigenvectors fulfills the following equations

((L
Ĉ

+ tE
Ĉ

) − λ(t)M
Ĉ

)ŷ(t) = 0 (14)

||ŷ(t)||2N
Ĉ

= n + 1. (15)
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Fig. 1.Approximations of two randomly generated objective functions. Top: Approximation after
1 step of the algorithm. Bottom: Approximation after 2 stepsof the algorithm.

To emphasize the dependence ont we writeλ(t) for the eigenvalue and̂y(t) for the
eigenvector. By differentiating (14) we obtain

(E
Ĉ
− λ′(t)M

Ĉ
)ŷ(t) + ((L

Ĉ
+ tE

Ĉ
) − λ(t)M)ŷ′(t) = 0. (16)

This (k + 1) × (k + 1) linear system in̂y′(t) will have a rank ofk, assumingλ(k) is a
distinct eigenvalue. To determinêy′(t) uniquely we differentiate (15), obtaining

ŷT (t)N
Ĉ

T N
Ĉ
ŷ′(t) = 0. (17)

Thus, the derivative of the eigenvectorŷ′(t) is determined by the solution to the linear
system

[

(L
Ĉ

+tE
Ĉ

)−λ(t)M
Ĉ

ŷT (t)N
Ĉ

T N
Ĉ

]

ŷ′(t) =
[

(−E
Ĉ

+λ′(t)M
Ĉ

)ŷ(t)
0

]

(18)

If we assume differentiability att, the second derivative ofθ(t) can now be found by
computing d

dt
θ′(t), whereθ′(t) is equal to the subgradientv given by (9).

θ′′(t) = d
dt

θ′(t) = d
dt

ŷ(t)T E
Ĉ

ŷ(t)

ŷ(t)T M
Ĉ

ŷ(t) = 2
ŷ(t)T M

Ĉ
ŷ(t) ŷ

T (t)
(

E
Ĉ
− θ′(t)M

Ĉ

)

ŷ′(t)(19)

A Modified Newton Algorithm Next we modify the algorithm presented in the pre-
vious section to incorporate the second derivatives. Note that the second order Taylor
expansion is not necessarily an over-estimator ofθ. Therefore we can not use the the
second derivatives as we did in the previous section.

Instead, as we knowθ to be infinitely differentiable when the smallest eigenvalue
λ(t) is distinct, strictly convex around its optimat∗, Newton’s method for unconstrained
optimization can be applied. It follows from these properties of θ(t) that Newton’s



method [9] should be well behaved on this function and that wecould expect quadratic
convergence in a neighborhood oft∗. All of this, under the assumption thatθ is differ-
entiable in this neighborhood. Since Newton’s method does not guarantee convergence
we have modified the method slightly, adding some safeguarding measures.

At a given iteration of the Newton method we have evaluatedθ(t) at a number of
pointsti. As θ is concave we can easily find upper and lower bounds ont∗ (tmin, tmax)
by looking at the derivative of the objective function for these values oft = ti.

tmax = min
i;θ′(ti)≤0

ti, andtmin = max
i;θ′(ti)≥0

ti (20)

At each step in the Newton method a new iterate is found by approximating the objective
function is by its second-order Taylor approximation

θ(t) ≈ θ(ti) + θ′(ti)(t − ti) +
θ′′(ti)

2
(t − ti)

2. (21)

and finding its maxima. By differentiating (21) it is easily shown that its optima, as well
as the next point in the Newton sequence, is given by

ti+1 = −
θ′(ti)

θ′′(ti)
+ ti (22)

If ti+1 is not in the interval[tmin, tmax] then the second order expansion can not be
a good approximation ofθ, here the safeguarding comes in. In these cases we simply
fall back to the first-order method of the previous section. If we successively store the
values ofθ(ti), as well as the computed subgradients at these points, this can be carried
out with little extra computational effort. Then, the upperand lower boundstmin and
tmax are updated,i is incremented by1 and the whole procedure is repeated, until
convergence.

If the smallest eigenvalueλ(ti) at an iteration is not distinct, thenθ′′(t) is not de-
fined and a new Newton step can not be computed. In these cases we also use the
subgradient gradient method to determine the subsequent iterate. However, empirical
studies indicate that non-distinct smallest eigenvalues are extremely unlikely to occur.

4 Experiments

A number of experiments were conducted in an attempt to evaluate the suggested ap-
proaches. As we are mainly interested in maximizing a concave, piece-wise differen-
tiable function, the underlying problem is actually somewhat irrelevant. However, in
order to emphasize the intended practical application of the proposed methods, we ran
the subgradient- and modified Newton algorithms on both smaller, synthetic problems
as well as on larger, real-world data. For comparison purposes we also include the re-
sults of a golden section method [9], used in [5], as a baseline algorithm.

First, we evaluated the performance of the proposed methodson a large number
of synthetic problems. These were created by randomly choosing symmetric, positive
definite,100 × 100 matrices. As the computational burden lies in determining the gen-
eralized eigenvalue of the matricesL

Ĉ
+tE

Ĉ
andM

Ĉ
we wish to reduce the number of



such calculations. Figure 2 shows a histogram of the number of eigenvalue evaluations
for the subgradient-, modified Newton method as well as the baseline golden section
search.
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Fig. 2.Histogram of the number of function evaluations required for 1000-synthetically generated
experiments using a golden section method (blue) and the subgradient algorithm (red).

The two gradient methods clearly outperforms the golden section search. The dif-
ference between the subgradient- and modified Newton is not as discernible. The some-
what surprisingly good performance of the subgradient method can be explained by the
fact that far away fromt∗ the functionθ(t) is practically linear and an optimization
method using second derivatives would not have much advantage over one that uses
only first order information.

Finally, we applied our methods to two real world examples. The underlying mo-
tivation for investigating an optimization problem of thisform was to segment images
with linear constraints using Normalized Cuts. The first image can be seen in fig. 3, the
linear constraints included were hard constraints, that isthe requirement that that cer-
tain pixels should belong to the foreground or background. One can imagine that such
constraints are supplied either by user interaction in a semi-supervised fashion or by
some automatic preprocessing of the image. The image was gray-scale, approximately
100 × 100 pixels in size, the associated graph was constructed based on edge informa-
tion as described in [10]. The second image was of traffic intersection where one wishes
to segment out the small car in the top corner. We have a probability map of the image,
giving the likelihood of a certain pixel belonging to the foreground. Here the graph
representation is based on this map instead of the gray-level values in the image. The
approximate size and location of the vehicle is know and included as linear constraint
into the segmentation process. The resulting partition canbe seen in fig. 4.

In both these real world cases, the resulting segmentation will always be the same,
regardless of approach. What is different is the computational complexity of the dif-
ferent methods. Once again, the two gradient based approaches are much more effi-
cient than a golden section search, and their respective performance comparable. As
the methods differ in what is required to compute, a direct comparison of them is not
a straight forward procedure. Comparing the run time would be pointless as the de-
gree to which the implementations of the individual methodshave been optimized for
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Fig. 3. Top: Resulting segmentation (left) and constraints applied (right). Here an X means that
this pixel belongs to the foreground and an O to the background. Bottom: Convergence of the
modified Newton (solid), subgradient (dashed) and the golden section (dash-dotted) algorithms.
The algorithms converged after 9, 14 and 23 iteration respectively.

speed differ greatly. However, as it is the eigenvalue computations that are the most
demanding we believe that comparing the number of such eigenvalue calculations will
be a good indicator of the computational requirements for the different approaches. It
can be seen in fig. 3 and 4 how the subgradient methods converges quickly in the ini-
tial iterations only to slow down as it approaches the optima. This is in support of the
above discussion regarding the linear appearance of the functionθ(t) far away from the
optima. We therfore expect the modified Newton method to be superior when higher
accuracy is required.

In conclusion we have proposed two methods for efficiently optimizing a piece-wise
differentiable function using both first- and second order information applied to the task
of partitioning images. Even though it is difficult to provide a completely accurate com-
parison between the suggested approaches it is obvious thatthe Newton based method
is superior.
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