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Abstract. Many problems in computer vision can be turned into a
large-scale boolean optimization problem, which is in general NP-hard.
In this paper, we further develop one of the most successful approaches,
namely roof duality, for approximately solving such problems for higher-
order models. Two new methods that can be applied independently or
in combination are investigated. The first one is based on constructing
relaxations using generators of the submodular function cone. In the sec-
ond method, it is shown that the roof dual bound can be applied in an
iterated way in order to obtain a tighter relaxation. We also provide ex-
perimental results that demonstrate better performance with respect to
the state-of-the-art, both in terms of improved bounds and the number
of optimally assigned variables.

1 Introduction

Discrete energy minimization methods have become the golden standard for
many computer vision and machine learning problems. Their ability to compute
globally optimal solutions or strong relaxations makes them suitable for a large
class of problems such as dense matching/stereo, segmentation, image synthesis
[1]. Often formulations with pair-wise cliques are used to incorporate length reg-
ularization [2]. In this case graph cuts are able to compute optimal or guaranteed
near optimal solutions for binary and multi-class problems [3].

The modeling power of pair-wise cliques is however limited and there has
been an increasing interest in higher-order interactions. For example, to avoid
the well known shrinking bias of length or area based approaches, curvature
regularization which requires higher-order models is considered in [4, 5]. Other
examples are [6] where approximate belief propagation is used for inference of a
higher-order learned model, [7] where second order smoothness priors are used
for stereo and [8] which uses a higher-order model for texture restoration. Even
potentials where the cliques involve all variables have been considered [9].

In this paper we are interested in minimizing energies with higher-order in-
teractions. Specifically, we will consider the quartic case (4th order energies),
but in principle our methods can be applied to interactions of any order. Our
work builds on the generalized roof duality methods presented in [10–12]. Here
it is shown that a lower bound on the minimum of an nth order pseudo-boolean
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function can be found by performing a maximization over a set of nth order sym-
metric submodular pseudo-boolean functions. In practice however, determining
whether a function is submodular is co-NP complete if n ≥ 4 [13]. Therefore
searching over the set of submodular functions is difficult. We propose to cir-
cumvent this problem by optimizing over positive linear combinations of a set of
generators (or extreme rays). The idea of generators was first introduced in [12].
In this paper, even though the resulting function space is only a subset of all
submodular functions, we show for 4th order models that optimizing over this
subset yields significantly better results than previously published methods.

We also present a method for improving the lower bound and increasing the
number of persistent variables based on a symmetric extension of the original
objective function. The approach is iterative and is guaranteed to produce at
least the lower bound of the roof dual. A similar approach was developed in [14]
for the special case of quadratic pseudo-boolean functions.

Related work. In recent years a number of strategies for optimizing higher-order
energies have been proposed. In [15, 16] dual decomposition is used and move-
making algorithms are proposed in [17, 18]. Furthermore, linear programming
approaches have been considered [19] as well as belief propagation [6].

Our approach is based on max-flow/min-cut methods which are considered
to be state-of-the-art for quadratic polynomials [1]. To handle higher-order inter-
actions, reduction techniques have been developed [20–22]. In [20], a roof duality
framework is presented based on reduction, but at the same time, the authors
note that their roof duality bound depends on which reductions are applied. In
contrast our work is based on [10, 12] which introduce a framework that works
directly on the higher-order potentials.

The extension method has similarities to the probing method of [1] in the
sense that both methods fixate one variable at the time and re-run the max-flow
computations for the modified graph. However, we need only to fixate a variable
once whereas probing requires fixating a variable to both 0 and 1. The methods
can be used in combination for tighter relaxations.

2 Generalized Roof Duality

In this section we will briefly state some of the results from [12] that serve as a
basis for our methods. The basic problem is that of minimizing a pseudo-boolean
polynomial f : {0, 1}n 7→ R of degree m. Since this problem is in general NP-hard
the following family of relaxations is considered:

l(g) := min(x,y)∈{0,1}2n g(x,y) (1)

s.t. g is submodular (2)

g(x, x̄) = f(x) (3)

g(x,y) = g(ȳ, x̄). (4)

Here the notation x̄ = (1−x1, 1−x2, . . . , 1−xn) is used. Note that the relaxation
g has twice the number of variables, that is, g : {0, 1}2n 7→ R. A function g
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satisfying the last condition g(x,y) = g(ȳ, x̄) is said to be symmetric. It can
be seen that l(g) is a lower bound on the minimum of f for any feasible g.
Furthermore, [10] shows persistency of the minimizers of g: if x∗i = ȳ∗i for a
minimizer (x∗,y∗) of g then any minimizer z∗ of f must have z∗i = x∗i . Hence,
persistency can be used to determine the optimal assignment of a single variable.

The goal is now to find the strongest possible bound l(g), that is, to maximize
l(g) over the set of feasible functions. To avoid solving the max-min problem,
[12] proposes the following procedure:

1. Find g∗ ∈ argmax g(0,0), where the maximum is taken over all functions g
fulfilling (2)-(4).

2. Compute a minimizer (x∗,y∗) ∈ argmin g∗(x,y).
3. If (x∗,y∗) is not identically zero, use persistency to simplify f and goto 1.

Otherwise, stop.

The above procedure can be proved to provide a solution that gives a bound
which is equal to or higher than max l(g). It turns out that if f is a quadratic
pseudo-boolean function, then the obtained maximum bound is the same as the
roof dual bound. Furthermore, for the cubic case (m = 3) it is shown that the
maximization of g(0,0) can be computed using linear programming.

Unfortunately, when m > 3 determining whether a given polynomial is sub-
modular is co-NP-complete. One way of avoiding this problem is to restrict the
space of functions in the maximization of g(0,0) to a subset that is easy to
generate. Ideally this set should be selected so that the maximum lower bound
is not weakened too much. Next we will show how to use a set of generators to
approximate the set of feasible functions well in the quartic case (m = 4).

3 Generators for Submodular Functions

The submodular symmetric functions of degree 4 form a cone. In this section we
will construct a basis for a subcone that enables us to optimize over it efficiently.
The elements of the basis are called generators and each submodular symmetric
function can be written as a linear combination (with positive coefficients) of
the generators. Unfortunately, not all generators of degree 4 can be optimized
using max-flow/min-cut algorithms. Therefore we have to settle for optimizing
over a subset of the cone.

The generators of the submodular (non-symmetric) cone are given in [23]
for n = 4. There are 10 generator classes, however, one of the classes cannot
be optimized using max-flow/min-cut [24]. For each generator e(xi, xj , xk, xl) in
the remaining 9 classes, we can construct a symmetric generator as

e(xi, xj , xk, xl) + e(ȳi, ȳj , ȳk, ȳl). (5)

Such a generator can only generate monomials with either x-variables or y-
variables. Therefore, we also incorporate generators where x- and y-variables
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have switched places, such as

e(yi, xj , xk, xl) + e(x̄i, ȳj , ȳk, ȳl). (6)

The procedure gives 132 quartic generators for each combination of indices
i, j, k, l. The same procedure can be applied to the lower order generators which
result in 8 cubic generators for each i, j, k and 2 quadratic for each i, j.

In order to generate the roof dual bound we need to be able to maximize
g(0,0) over feasible functions g. Given the generators above we can construct
symmetric submodular functions from positive linear combinations

g(x,y) =

k∑
i=1

αiei(x,y), αi ≥ 0, (7)

where {ei}ki=1 are all of our generators. Moreover, by identifying coefficients, the
constraint g(x, x̄) = f(x) can be implemented as a linear system of equations
Aα = a, where α is a vector containing all the coefficients αi in the linear
combination (7). Therefore the maximization of g(0,0) can be formulated as the
linear program

max cTα (8)

s.t. Aα = a (9)

α ≥ 0, (10)

where the vector c contains the coefficients for ei(0,0).
In [11], a completely different way is used to construct g, not using generators.

It can be shown that the feasible set of functions in this construction is a strict
subset of the function cone generated by our generators.

4 Symmetric Extension

In order to improve the lower bound and increase the number of persistencies of
f : {0, 1}n → R, we will extend f(x) by introducing an additional variable x0.
Let φ : {0, 1}n+1 → R be the extension of f(x) such that

φ(x, x0) = x0f(x) + x̄0f(x̄). (11)

By construction we have φ(x, 1) = f(x) and φ(x̄, 0) = f(x). The function φ is
symmetric in the sense that φ(x, x0) = φ(x̄, x̄0) and therefore

min
x
f(x) = min

x0=1
φ(x, x0) = min

x0=0
φ(x, x0). (12)

It is easy to see that the same holds for any other variable xk, k = 1, . . . , n,

min
x
f(x) = min

xk=1
φ(x, x0) = min

xk=0
φ(x, x0). (13)

The key observation is that if we can determine the optimal value of any of
the variables for minxk=1 φ(x, x0) through persistency, then we can simplify the
original problem min f(x).



Tighter Relaxations based on Generalized Roof Duality 5

Lemma 1. If
(x∗, x∗0) ∈ argminxk=1 φ(x, x0)⇒ x∗i = 1 (14)

for some i 6= k, then, for every

z∗ ∈ argmin f(z)⇒ z∗k = z∗i . (15)

Proof. Let us assume that (14) holds but there is some solution z∗ with z∗k 6= z∗i
and f(z∗) = min f(z). We get two cases; either z∗k = 1 or z∗k = 0.

If z∗k = 1 then we have

φ(z∗, 1) = f(z∗) = min f(z) = min
xk=1

φ(x, x0). (16)

Therefore (z∗, 1) ∈ argminxk=1 φ(x, x0) but z∗i = z̄∗k = 0 contradicting (14).
If z∗k = 0 then we have

φ(z̄∗, 0) = φ(z∗, 1) = f(z∗) = min f(z) = min
xk=1

φ(x, x0). (17)

Therefore (z̄∗, 0) ∈ argminxk=1 φ(x, x0) but z̄∗i = z∗k = 0 contradicting (14).

Hence, we can reduce the number of variables of our original problem for
each persistency obtained from the fixations of the symmetric extension. In case
we can additionally determine x∗0, the following stronger result holds.

Corollary 1 If

(x∗, x∗0) ∈ argminxk=1 φ(x, x0)⇒ x∗i = x∗0 = 1 (18)

for some i 6= k, then, for every

z∗ ∈ argmin f(z)⇒ z∗k = z∗i = 1. (19)

Proof. Suppose (18) holds and there is a solution z∗ with z∗i = 0. First z∗i = z∗k
according to the Lemma 1. Then

φ(z̄∗, 0) = φ(z∗, 1) = f(z∗) = min f(z) = min
xk=1

φ(x, x0). (20)

Therefore (z̄∗, 0) ∈ argminxk=1 φ(x, x0) but z∗0 = 0 contradicting (18).

In Lemma 1 and Corollary 1 we have only considered the cases when x∗i = 1 is
persistent. Similar results can of course be derived when x∗i = 0 is persistent.
We summarize the results in Table 1.

To reduce the number of variables in f we use generalized roof duality to
determine persistencies of minxk=1 φ(x, x0). Depending on which of the vari-
ables we fix to be one, different reductions can be obtained. Our approach is to
go through all the possible fixations systematically and reduce f as soon as a
persistency is obtained. We summarize our algorithm below.

1. Construct φ(x, x0) and set lower bound l := −∞.
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Table 1: Persistency in minxk=1 φ(x, x0) and the resulting reductions in f

persistency of x∗0 persistency of x∗i reductions in f(z)

- x∗i = 1 zk = zi
- x∗i = 0 zk = z̄i

x∗0 = 0 x∗i = 1 zk = zi = 0
x∗0 = 0 x∗i = 0 zk = z̄i = 0
x∗0 = 1 x∗i = 1 zk = zi = 1
x∗0 = 1 x∗i = 0 zk = z̄i = 1

2. For k = 0, . . . , n do
(i) Compute persistencies and lower bound lk of minxk=1 φ(x, x0).
(ii) Reduce f using the persistencies and Table 1.

(iii) Update the lower bound l := max(l, lk).

The fixation xk = 1 for k = 0 corresponds to the original function f as φ(x, 1) =
f(x) and therefore the procedure will always give at least as many persistencies
as the usual procedure. Note that no additional persistencies are obtained if one
were to fixate xk = 0 due to symmetry.

5 Experiments

In this section we will describe some challenging optimization problems in order
to test and compare the performance of the proposed methods. We will use the
methods listed in Table 2.

Table 2: Abbreviations for the different methods

RD Standard roof duality [1]
GRD Generalized Roof Duality (GRD) as in [12]

GRD-gen GRD using generators (Section 3)
GRD-ext GRD-gen in combination with symmetric extension (Section 4)
Fix et al. The reductions proposed in [25]
HOCR The reductions proposed in [22]

5.1 Segmentation with Curvature Regularization

We first present a segmentation experiment where higher order cliques model the
curvature regularization. A discretized version of the following energy is used:

E(S) =

∫
S

f(x) dx+

∫
∂S

(ρ+ σκ(s)2)ds. (21)
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Here f(x) is the cost of assigning x to the interior of S and the second term
is a combined length and curvature regularizer. We will use the pseudo-boolean
optimization approach suggested in [5] for an 8-connected grid which requires
quartic interactions. The construction can be understood by examining Figure 1.
The boolean variables xa,xb,xc and xd are assigned interior or exterior. The two
arrows will contribute to the curvature if and only if both of them are on the
boundary, that is, xa 6= xb and xc 6= xd. This can be encoded using the quartic
term

bij

(
xaxc(1− xb)(1− xd) + (1− xa)(1− xc)xbxd

)
, (22)

where bij is the contributed curvature penalization.

xc

xd
xa

xb

yij
xcxa

xb = xd

Fig. 1: Examples of four incident region variables xa, xb, xc and xd in an arbitrary
mesh. The region variables may coincide for some edge pairs.

We use the cameraman as a test image, Figure 2. The unary data costs for
the foreground and background are set to λ(1 − I(x)) and λI(x), respectively,
where I(x) ∈ [0, 1] is the gray scale value at position x and λ = 75. The length
and curvature weights are set to ρ = 1 and σ = {1, 2}, respectively. Experimental
data are collected in Table 3.
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Fig. 2: Input image and the results for GRD, GRD-gen, and Fix et al. Unlabeled
variables are colored black. The HOCR method returned no assigned variables.

.

None of the methods are able to produce a complete labeling which indicates
the difficulty of the problem. The resulting (incomplete) segmentations for σ = 1
are plotted in Figure 2. Note that GRD-gen outperforms the competitors with
more than 3 times as many assigned variables for σ = 1 and it is the only method
to assign labels for σ = 2. While the runtime for GRD-gen was much faster than
GRD it was considerably slower than both of the other methods. The GRD-gen
method has potential for this problem but the approximation tightness needs to
be improved in order to beat state-of-the-art based on LP relaxations [5].
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Table 3: Results for the curvature experiments

σ = 1 Assigned variables Runtime [s] Lower bounds

GRD 20.8% 5050 4.24×104

GRD-gen 76.5% 1080 8.29×104

Fix et al. 16.0% 1.00 4.54×104

HOCR 0.00% 1.00 −7.42 ×104

σ = 2 Assigned variables Runtime [s] Lower bounds

GRD 0.00% 10300 −0.48× 105

GRD-gen 34.4% 4995 0.719× 105

Fix et al. 0.00% 1.00 −0.38× 105

HOCR 0.00% 1.00 −2.872× 105

5.2 Synthetic Data

In the final experiment, we test the various methods on synthetically generated
polynomials with random coefficients:

f(x) =
∑

(i,j,k,l)∈T

fijkl(xi, xj , xk, xl), (23)

where T ⊆ {1 . . . n}4 is a random set of quadruples and each fijkl is a fourth
degree polynomial with its coefficient picked uniformly from [−100, 100]. The
persistency results for problem instances with n = 1000, |T | = {50, 100, 200, 300}
are given in Table 4. The persistency distributions for n = 1000, |T | = 300
are also visualized in Figure 3. Note that the results for GRD-gen and GRD-
ext are similar and therefore only GRD-gen is present in the left diagram. We
also compare the relative lower bounds (` − `GRD)/|`GRD|, where `GRD is the
generalized roof dual bound for f(x), see Table 5. The relative lower bounds
follow the same trend as the persistency, GRD-gen and GRD-ext give similar
lower bounds and significantly better than GRD.

Table 4: Results for the synthetic experiments
Assigned variables |T | = 50 Runtime [s] |T | = 100 Runtime [s] |T | = 300 Runtime [s]

GRD-ext 74.5% 3.95 73.6% 17.9 68.3% 430
GRD-gen 73.6% 0.06 72.9% 0.10 66.5% 0.61
GRD 59.1% 0.06 56.3% 0.12 48.0% 1.01
Fix et al. 34.8% 0.00 33.2% 0.00 23.7% 0.01
HOCR 23.0% 0.00 21.4% 0.00 14.5% 0.01
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Fig. 3: Average persistency for the syn-
thetic experiments with |T | = 300.

Table 5: Relative lower for the syn-
thetic experiments with |T | = 300.

Rel. bounds Min Median Max

GRD-ext 5.9% 7.7% 10.1%
GRD-gen 5.6% 7.5% 9.4%
GRD 0.0% 0.0% 0.0%
Fix et al. −14.0% −16.3% −18.0%
HOCR −44.6% −48.9% −52.6%

6 Discussion

Two new methods have been investigated with the objective to improve the per-
formance of the well-known roof dual bound for pseudo-boolean optimization.
We have experimentally demonstrated that (i) constructing submodular relax-
ations using generators significantly outperforms previously published methods
and that (ii) applying the roof dual in an iterated manner does lead to stronger
bounds and more persistencies, but may not be worth-while for the problems
considered unless the extra computational cost can be drastically reduced.

We are currently working on improving the running times for the two meth-
ods. Most of the time is spent on the LP for constructing the relaxation. In [12],
a heuristic scheme for GRD which completely avoids the LP is presented without
any significant loss in relaxation performance. Essentially the same heuristics can
be applied to GRD based on generators. Further, the max-flow computations in
each step of the extension method are typically very similar. Therefore, reusing
flows is a likely to speed up the computations.
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