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Abstract

This paper presents a solution to the problem of pose es-

timation in the presence of heavy radial distortion and a po-

tentially large number of outliers. The main contribution is

an algorithm that solves for radial distortion, focal length

and camera pose using a minimal set of four point corre-

spondences between 3D world points and image points. We

use a RANSAC loop to find a set of inliers and an initial es-

timate for bundle adjustment. Unlike previous approaches

where one starts out by assuming a linear projection model,

our minimal solver allows us to handle large radial distor-

tions already at the RANSAC stage. We demonstrate that

with the inclusion of radial distortion in an early stage of

the process, a broader variety of cameras can be handled

than was previously possible. In the experiments, no cali-

bration whatsoever is applied to the camera. Instead we as-

sume square pixels, zero skew and centered principal point.

Although these assumptions are not strictly true, we show

that good results are still obtained and by that conclude

that the proposed method is applicable to uncalibrated pho-

tographs.

1. Introduction

The ability to find the position and the direction in which

a camera points is an old and challenging problem in com-

puter vision. If an image based approach is chosen, as in this

paper, the common way to solve the problem is to find cor-

respondences between an image taken with a camera with

unknown position and a three dimensional model. This

method has for example been used in Photo tourism [25].

In this paper we choose to follow the same outline of the

algorithm but add one extra component to the model, radial

distortion. The enhancement with radial distortion makes it

possible to use photos taken with fisheye lenses and other

heavily distorted images, see Figure 1 for an example.

The oldest papers on localization are from the time be-

fore the research field of computer vision existed. Already

in 1841 Grunert [14] showed that there can be up to four real

Figure 1. Left: An image taken with a fisheye lens. Right: The

same image rectified when kernel voting is used to determine the

radial distortion

solutions to the problem of localization if inner calibration

of the camera is known and there are three correspondences

between the images and known three dimensional points.

For an easier description of the problem and how to solve

it, [15] is recommended.

If the inner calibration is unknown it is necessary to have

six correspondences between the image and the 3D model.

In that case a linear method to find the camera position

exists [16]. This method usually gives poor results since

digital cameras have square pixels and the principal point

close to the center of the image. By not imposing these as-

sumptions to the camera model, too many degrees of free-

doms are used which makes the model unnecessarily unsta-

ble. These assumptions can however be incorporated and

the problem is then to find the pose along with an unknown

focal length. In 1995 Abidi and Chandra [1] presented a

solution to this problem that worked on planar scenes. Four

years later Triggs [28] gave a solution to the same problem

that worked well on non-planar scenes. In the same paper

he also presented a solution to the same problem but with-

out any assumptions on the principal point of the camera.

In 2008 the latest paper [4] on this problem was presented.

In this paper Bujnak et al. presents a solution that works on

both planar and non-planar data. In that solution Gröbner

basis methods were used to solve the system of polynomial

equations that arises in their solution. Gröbner bases were

also mentioned in the paper by Triggs and to the authors

knowledge this is the first paper in the computer vision com-
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munity that uses Gröbner basis methods to solve a system

of polynomial equations. This is also the method that will

be used in this paper to solve the systems of polynomial

equations arising in the problem.

The problem of pose with unknown focal length is not

a true minimal case with four points, hence no exact solu-

tion can be found. In [4] the fact that the problem is over

constrained is resolved by ignoring one equation in an early

step of the solver and then using the last equation to ver-

ify which of the multiple solutions to use. An alternative

method to find the focal length was presented by Josephson

et al. [18]. In that paper a correspondence to another image

replaced one of the correspondences to a three dimensional

point. That method can also be used for the four points

problem if one of the points is substituted by an arbitrary

line through that point. In this work we instead choose to

include radial distortion into the model. This adds one de-

gree of freedom and hence the four points problem becomes

minimal.

Minimal problems such as those described above and

the one presented in this paper are in computer vision usu-

ally used as the key component in a RANSAC engine [10].

RANSAC is the most commonly used method to estimate

camera pose from an image, also used in this paper, works

as follows. Start by finding correspondences between the

image and a model, this is usually done by finding inter-

est points in the images and calculate descriptors of these,

see [2, 23, 24]. In this paper SIFT is used. After that

the RANSAC engine is used to find consistent correspon-

dences, so called inliers. The inliers are in the end used in

a local optimization initiated by the camera model given by

the RANSAC engine.

The contribution of this paper is to use radial distortion

already in the RANSAC step in the problem of absolute

pose. Radial distortion was introduced to the computer vi-

sion community by Devernay and Faugeras [9] in 1995. But

it was used long before that in the photogrammetry liter-

ature, e.g. [3]. In both these paper the so-called “plumb

line model” is used. This model is probably the most

used model, e.g. Photo tourism uses this model. However

this model is not well suited for minimal problems. In-

stead we use the division model introduced by Fitzgibbon in

2001 [11]. In that paper he shows that this model is equally

powerful as the plumb line model. Due to its simpler form,

the division model has been used on several minimal prob-

lems [6, 17, 20].

Although the main focus of this paper is the pose estima-

tion problem, the solver of the minimal solution can also be

used to estimate the focal length and the radial distortion of

a camera lens and by that un-distort an image. A method to

find the radial distortion is to use kernel voting. In [22] Li

and Hartley used it to find the radial distortion and in [21]

Li used it to find the focal length.

2. The Camera Model

The basis of the camera model used in this paper is the

standard pinhole camera model [16] where the projection

equation is written,

λx = PX. (1)

Here, P is the so-called camera matrix of size 3 × 4. The

camera matrix can be factorized as,

P = K[R | t]. (2)

In this factorization R is a rotation matrix and holds the

information in which direction the camera is pointing and t

gives information of camera position. K is the calibration

matrix of the camera and compensates for the intrinsic setup

of the camera. The K matrix can be written

K =





f s px

0 γf py

0 0 1



 . (3)

In this matrix f represents the focal length of the camera.

Further on represents s the skew, for most digital cameras

this is zero and the aspect ratio of the pixels described by γ
is very close to one. The principal point of these cameras

given by (px, py) is also close to the center of the images.

In the rest of the paper a principal point in the center of an

image and square pixels with zero skew are assumed and

it will be showed that in practice, these assumptions yield

good results even though they are not strictly true.

In this paper the pinhole camera model is extended with

radial distortion. The radial distortion is modeled by the

division model introduced by Fitzgibbon [11]. The reason

to choose this model is that it gives easier calculations than

the plumb line model. The model transforms the distorted

coordinates given by the pinhole camera model according

to,

pu = pd/(1 + µr2
d). (4)

Here µ is the distortion parameter and pu = (xu, yu) and

pd = (xd, yd) are the undistorted and distorted positions,

respectively. In this paper, the distortion center is fixed to

coincide with the principal point of the camera and we set

rd = ‖pd‖. To get a consistent radial distortion indepen-

dent of image size all images coordinates are initially scaled

with a factor of

scale =
2

max(width, height)− 1
, (5)

which maps all image coordinates to be between minus one

and one.



3. Pose with Radial Distortion

The problem of solving for radial distortion, focal

lengths and pose has eight degrees of freedom; one dis-

tortion parameter, focal length, three translation parameters

and three rotation angles. To simplify the calculations the

inverted focal length is used, and by that the calibration ma-

trix will be,

K =





1 0 0
0 1 0
0 0 1/f



 . (6)

This can be done since the camera matrix only is given up

to scale. In the following 1/f will be substituted by w to

simplify the notation.

The rotation is parameterized with quaternions. This

gives the following rotation matrix,

R=





a2 + b2 − c2 − d2 2bc − 2ad 2ac + 2bd
2ad + 2bc a2 − b2 + c2 − d2 2cd − 2ab
2bd − 2ac 2ab + 2cd a2 − b2 − c2 + d2



.

(7)

Last is the translation given by a vector t =
[

x y z
]T

.

Composing these, the camera matrix P will be given ac-

cording to equation (2). To include the radial distortion in

this model the projection will be modeled by,

λ





x1

x2

1 + µ(x2
1 + x2

2)



 = PX. (8)

At this stage the number of unknowns is nine. But since

the camera matrix is only defined up to scale, the number of

unknowns can be reduced by one by setting the quaternion

parameter a equal to one. This will result in that the rotation

matrix also will include a scale factor and that the scale of

the camera matrix will be fixed. By putting a = 1 the possi-

bility of a to vanish is also eliminated. This might look like

a problem but since a is a real number the probability of it

to be zero is zero. We have also verified in the experiments

that this does not cause any problems.

The number of unknowns is now down to eight. Every

correspondence between an image point and a world point

will now give rise to three equations and one additional un-

known. Hence four correspondences are necessary to solve

the problem. This is a true minimal case were all equations

are necessary and in the next two sections it is explained

how to solve this problem.

4. Solving the Minimal Setup

To solve the equations generated by (8) the equation are

first simplified by using the freedom in choice of coordinate

system. In the three dimensional space any similarity trans-

form can be applied. This freedom is used to put the first

point in origin and the second in
[

1 0 0
]

. In the image,

only rotation and scaling is allowed since the focal length is

unknown. Due to this, the first point is moved to
[

1 0
]

. To

summarize the following point positions will hold for every

problem setup,

X1 =









0
0
0
1









, X2 =









1
0
0
1









, x1 =





1
0
1



 . (9)

This choice of coordinate system leads to several simpli-

fications of the problem. First we can express the translation

coordinate x in measured image points and the quaternion

parameters as follows,

x = g1(a, b, c, d) =
u1

u2

(2ad + 2bc)− (a2 + b2 − c2 − d2).

(10)

u1 and u2 are here the x and y coordinates of the second

image point. The second simplification is that y can be set

to zero. The last simplification from the choice of the coor-

dinate system is that the product between the inverted focal

length and z can be expressed in the quaternion parameters

and the distortion parameter according to,

zw = g2(a, b, c, d, λ) = x(1 + µ), (11)

were x is from equation (10).

The next step is to include the last two point correspon-

dences and the last information from the second point x2.

This is done by eliminating λ in equation (8). The elimina-

tion is done by multiplying PX with the following matrix

from the left,

B =





0 −x3 x2

−x3 0 x1

−x2 x1 0



 , (12)

where x3 = 1 + µ(x2
1 + x2

2). This is a rank 2 matrix so not

all rows need to be used from the equation BPX = 0. For

the second image point only the second row of B is used

and for the other two the first and the last row are used.

This results in five equations in the five unknowns b, c, d,

w and µ. With use of Gröbner basis methods this system of

polynomial equations will be solved.

5. Gröbner Basis Solver

To solve the system of polynomial equation Gröbner ba-

sis methods are used. Gröbner basis methods have suc-

cessfully been used to solve several systems of polynomial

equations derived from computer vision problem in recent

years, e.g. [4, 5, 12, 19, 27]. The advantages of using

Gröbner basis methods is that if the structure of the system

is the same for a large number of problem some calculations



can be done symbolically in advance, which leads to an effi-

cient method to solve the systems of polynomial equations.

Only the major concepts of Gröbner basis methods will

be described in this paper. For basic background theory we

recommend [8] and [7] by Cox et al. For details for the use

in computer vision see [26] for example.

The first step in constructing a Gröbner basis solver is

to find out the number of solutions of the system. This can

be done once and will hold for all geometrical setups of the

same minimal problem. The method to find the number of

solutions is to use a symbolic program e.g. Macaulay 2 [13].

The problem of this paper turns out to have 24 solutions

with the given formulation. However, it is quadratic in the

focal length so it will never give more than 12 geometrically

plausible solutions.

The second step is to expand the initial set of equations.

This is done by multiplying the initial equations with a set

of monomials. This results in more linearly independent

equations with the same solution set and by that it is possi-

ble to construct the Gröbner basis. In the problem at hand,

the two original equations of lowest degree, these resulting

from multiplication with the last row of B in equation (12),

are multiplied with µ and w. After that all the nine equa-

tions, at this stage, are multiplied with all monomials up to

degree four in the unknowns. The result of this expansion is

1134 equations and 720 different monomials. This can be

written as,

CexpXexp = 0, (13)

where Cexp is a 1134 × 720 matrix holding all coefficients

and Xexp is a 720 elements long column vector with all

occurring monomials. This equation corresponds to equa-

tion (4) in [5] and the rest of the solver will follow that pa-

per. Those details will not be given here. Another way to

construct the solver is to use the automatic solver generator

by Kukelova et al. [19]. We chose the first alternative since

it enhances the numerics.

The usual step at this stage is to sort the monomials in a

monomial order and then find the Gröbner basis by a Gauss-

Jordan elimination. Instead the method from [5] is followed

to enhance the numerics. This means that QR-factorization

with column pivoting is used together with adaptive trunca-

tion of the ideal. The truncation threshold used is 10−8.

To construct the action matrix describing multiplication

following [5], the permissible monomials and the action

variable needs to be given. In this paper we choose all

monomials up to degree three to be in the permissible set

and b to be the action variable. The number of permissible

monomials with the given choice is 56.

With this the action matrix can be constructed and the

eigenvectors of the transposed action matrix will hold all so-

lutions to the system, see [5] for details on how to construct

the action matrix with the method chosen in this paper.
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Figure 2. Left: Histogram of errors over 10000 runs on noise free

data. Right: Histogram of the number of solutions with real posi-

tive focal length found on the same data.

Matlab code for the solver used in this paper is available

online at http://www.maths.lth.se/vision/

downloads.

6. Experiments on Synthetical Data

In this section we study some basic properties of our new

algorithm on synthetic data. We start off with a straightfor-

ward test on noise free data to check stability and the distri-

bution of plausible solutions. In this experiment, random

scenes were generated by drawing four points uniformly

from a cube with side length 1000 centered at the origin.

A camera was then placed at a distance of 1000 from the

origin pointing approximately at the center. The camera

was calibrated except for the focal length that was set to

around 1000. Radial distortion was then added to the pro-

jected points and the distortion parameter was uniformly

drawn from the interval [−0.5, 0]. Our new minimal solver

was run on 10000 such instances and Figure 2 displays the

results of this experiment. The numerical error stays very

low for almost all cases. A very small number of examples

show larger errors, but these do not pose any serious prob-

lem since the intended application is RANSAC where lots

of instances are solved and only the best one is kept. As

previously mentioned, the largest possible number of plau-

sible solutions (real positive focal length) is 12. However,

the largest observed number of plausible solutions for the

10000 random instances was 10 and in all but a few excep-

tions we got 6 solutions or fewer.

To verify that the solver does give accurate results and

not just adapts to noise we made an experiment where we

measured the relative error in focal length as a function of

noise. The setup was the same as in the previous experiment

and the standard deviation of the noise was varied between

(the equivalent of) zero and three pixels on a 1000 × 1000
pixel image. For each noise level, 1000 problem instances

were tested. The results are given in Table 1 and show that

our method is robust to noise. Even with as large errors as

three pixels, the median error in focal length is less than

seven percent.

The time consumed of the solver was also measured. On

an Intel Core 2 with clock rate of 2.13 GHz the average



Noise Median 75th percentile

0.0 1.5 · 10−11 5.1 · 10−10

0.5 1.4 · 10−2 4.1 · 10−2

1.0 2.3 · 10−2 6.8 · 10−2

2.0 5.2 · 10−2 1.5 · 10−1

3.0 6.7 · 10−2 1.5 · 10−1

Table 1. The relative error of the focal length for different levels of

noise. The noise is given in pixels.

time for a call over 1000 tests was 60 ms when a Matlab

implementation was used.

The next synthetic experiment was designed to investi-

gate how important it is to include radial distortion in the

minimal solver. To do that, a setup with 80 inliers and 120

outliers was constructed. Radial distortion was then added

to all image points. Three different levels of radial distor-

tion were used, 0, −0.07 and −0.2. Zero distortion was

included to test our algorithm compared to a method that

assumes no radial distortion. A distortion of −0.07 was

used since the normal lens later used in the real experiments

roughly has this distortion. This lens is shipped with a con-

sumer level SLR camera. The last value, −0.2, corresponds

to the distortion of the fisheye lens later used in the experi-

ments. Noise corresponding to one pixel in a 1000 × 1000
image was then added to each image point. On this data a

RANSAC step was applied and the number of inliers was

counted. In the RANSAC loop a point was considered to be

an inlier if the reprojection error was less than 0.01 times

the mean value of all coordinates of all points given that the

origin is in the center of the image. One hundred individual

scenes were used for each distortion level. All distortion

levels were tested both on the proposed method and on the

method of Bujnak et al. [4]. The algorithm of Bujnak et al.

solves for pose and focal length using four points. The re-

sults of this experiment are shown in Figure 3 with increas-

ing radial distortion from left to the right. Our method is

plotted with a solid blue line and Bujnak’s with dashed red.

The results show as expected that if radial distortion is zero

it is slightly better not to estimate it. The two other plots

show that the use of radial distortion gives a large boost in

performance. Note especially the large difference even with

a small distortion of a standard SLR camera lens. These re-

sults will also be confirmed in the experiments with real

data.

7. Experiments on Real Data

The real world experiments were done in a leave one

out manner. This was done by first creating a model of a

scene using the Photo tourism bundler [25]. To build the

model 93 images from a shopping street were used cover-

ing around one hundred meters. Example of one of those

images is shown to the right in Figure 4. In all these images

a regular lens was used. For 29 of these images a second

image was taken from the exact same position (a tripod was

used to fixate the position) with a fisheye lens. See Figure 4

(left) for an example. Then one image at a time (of those

images with a corresponding fisheye image) were removed

from the model. The pose of the removed image was esti-

mated using the proposed method both for the fisheye image

and the regular image. The positions were then compared

with the positions estimated by Photo tourism. Note that

Photo tourism does not give an exact solution and the au-

thors do not know the precision, but it will still be used as

ground truth in this paper. The results of this experiment

was also compared with the method by Bujnak et al.

The pose estimation is done with the following method.

First SIFT is applied to the image for which the pose should

be estimated. The next step is to find potential correspon-

dences in the image. This is done by nearest neighbor. A

point is considered a correspondence if the distance to the

closest point times 0.9 is not smaller than the distance to the

second closest point. When potential correspondences are

found, a RANSAC step is performed to find true correspon-

dences. In the end local optimization is performed.

The first evaluation on the real data experiments was to

find the number of inliers given the number of RANSAC it-

erations. The threshold for a point to be considered an inlier

is the same as in the corresponding synthetic experiment. In

Figure 5 the result is shown. To the left is the result when

the fisheye lens is used and to the right is the result for the

regular lens. The graphs show an average over one hun-

dred trials for the images shown in Figure 4. The result is

typical for most of the images. It is obvious that the use

of radial distortion boosts the performance significantly. In

some of the tests the method without distortion almost fails

to get more inliers than the minimal set. This shows that

the use of radial distortion already in the RANSAC step is

an important way to increase the performance of the pose

estimation. The result is similar to those in the synthetic

experiments.

Figure 4. Test images used for the experiment whose results are

shown in Figure 5. The images were taken at the exact same posi-

tion.

The next experiment to evaluate the proposed method is

to compare the pose estimated by our new method with

the position given by Photo tourism. To do this the in-

liers, position, focal length and radial distortion given by the
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Figure 3. Number of inliers given the number of RANSAC iterations for an example with 80 inliers and 120 outliers. Noise was set to

correspond to one pixel in a 1000 × 1000 pixels image. The distortion parameter, µ, was fixed to, from left to right, 0, −0.07, −0.2 and

one hundred examples were performed for each level of distortion. The blue solid line is the method of this paper and the dashed red line

is the method proposed by Bujnak et al.
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Figure 5. The number of inliers given the number of RANSAC

iterations. To the left, a fisheye lens was used and to the right

a regular lens was used. The blue solid line is for the method

proposed in this paper and the dashed red line is for the method

which does not include distortion.

RANSAC engine are used in a local optimization. The opti-

mization is done for all the unknown parameters. The result

is compared with the result when Bujnak’s method is used.

For that method the same local optimization is performed

with the radial distortion initiated with µ = 0. The scale

of the model in this experiment is adjusted so that the er-

rors roughly correspond to meters in camera position. Each

of the 29 camera positions used in the experiment is esti-

mated one hundred times so the pose estimation has been

performed 2900 times. In Figure 6 the result of this experi-

ment is shown. To the left is the result when the fisheye lens

is used and to the right is the result for the regular lens.

The precision of Photo tourism that is used for the error

measurements is unknown to the authors. Due to that the

result for the smallest errors are hard to interpret. We esti-

mate that on this data set, Photo tourism achieves roughly an

accuracy of one to a couple of meters. Thus error measure-

ments below that are not reliable. Nevertheless, one can see

clearly that our new minimal algorithm gives much more ac-

curate results compared to the previous method which does

not take distortion into account in the RANSAC engine.

The results of the pose estimation for the proposed

method on a fisheye lens was also compared with the re-

sult when the regular lens was used. In Figure 7 the result
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Figure 6. The percentage of images with an estimated position fur-

ther away then a given distance to the position given by Photo

tourism. The error is roughly given in meters. Notice the logarith-

mic scale. The blue solid line is for the proposed method and the

red dashed represents method without distortion. The left plot is

for the fisheye lens and the right is for a regular lens.

is shown. In the figure, the blue solid line shows the result

with the fisheye lens and the red dashed line shows the re-

sult with the regular lens. The plot shows that the amount

of radial distortion gives almost no impact on the result.
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Figure 7. Error in meters for distorted image and non-distorted im-

age using the proposed algorithm on a logarithmic scale. The blue

line represents the distorted images and the red show the result for

images taken with a regular lens.



The last experiment is a kernel voting experiment where

the distorted image in Figure 1 (left) was used. The image

was localized 500 times with the minimal solver and the re-

sults of the estimations of the radial distortion were used in

a kernel voting scheme to find the radial distortion. The re-

sults of the kernel voting is shown in Figure 8. The peak

of the curve is at µ = −0.20 and that value was used to

remove the distortion on the original fisheye image. The

undistorted image is shown in Figure 1 (right). Notice how

the curved lines in the original image have been straightened

in the undistorted image. This shows that the estimated ra-

dial distortion is reasonably accurate.
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Figure 8. Result of the kernel voting for radial distortion. The

standard deviation of the Gaussian kernel was fixed to 1/3 and the

peak of the curve is at µ = −0.20.

8. Conclusions

In this paper a method to estimate the position, rotation,

focal length and radial distortion from a minimal set of cor-

respondences to a 3D model is presented. This is the first

algorithm presented to do this estimation. The parameteri-

zation used in this paper gives a system of polynomial equa-

tions. This system is solved with Gröbner basis methods.

This gives a fast and numerical stable method that can be

used in a RANSAC loop.

Previous methods have not assumed radial distortion in

the RANSAC engine and in this paper it is shown that

the benefits of using radial distortion in the core of the

RANSAC engine is significant. This is shown both on syn-

thetical and real data when a fisheye lens is used. That the

improvements are large with the fisheye lens comes as no

surprise due to the heavy radial distortion in this case. More

surprising are the large improvements for a regular lens of

an SLR camera. The reason for this is that there is some

radial distortion even in those kind of lenses and evidently,

that distortion can have a large effect on the estimated posi-

tion.

The experiments in the paper also show that the amount

of radial distortion has little impact on the result. Hence

can the new method be used both when no radial distortion

is present and on images with heavy radial distortion.
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